

DOIs:10.2018/SS/202507024

--:--

Research Paper / Article / Review

India's Strategic Vision for Sustainable Agriculture by 2047: Objectives and Methodologies for Transformation

Dipesh Jha¹ and Shreedhar Nimavat²

Mahatma Gandhi Department of Rural Studies, Veer Narmad South Gujarat University, Surat-07 Email: edc.djha@gmail.com

Abstract: India's agricultural sector, the backbone of its economy and a critical component of its food security framework, faces significant challenges in the pursuit of sustainable development. This paper explores the imperative of sustainable agriculture in India and examines the role of various sustainable practices in addressing the sector's key challenges, focusing on Vision 2047, which aims to transform India into a developed nation by its centennial year of independence. The study highlights the importance of climate-smart agriculture, organic farming, and agroforestry in improving agricultural resilience, enhancing food security, and promoting environmental sustainability. It also emphasizes the role of socio-economic innovations, such as Farmer Producer Organizations and market linkages, in supporting sustainable practices and improving farmer livelihoods. The paper concludes by emphasizing the crucial role of sustainable agriculture in achieving India's Vision 2047 and calls for urgent action to scale up sustainable practices nationwide through multi-stakeholder collaboration and inclusive policies.

Key Words: Sustainable agriculture, Vision 2047, Climate-smart agriculture, Organic farming, Agricultural policies.

1. INTRODUCTION

1.1 Background and Context

India's agricultural sector is the backbone of its economy and a critical component of its food security framework. This sector has played a pivotal role in shaping the nation's economic development and ensuring the livelihood of a significant portion of its population.

Significance of Agriculture in the Indian Economy

Agriculture is the primary income source for nearly half of India's population, contributing 16-18% to GDP and employing 42-52% of the workforce. It provides food, feed, and fiber for 1.38 billion people, representing 18% of the world's population. India has transformed from food-deficient to self-sufficient, achieving a 3.7% agri-GDP trade surplus in 2018-19. This growth stems from technological advances and policy reforms, with the Green Revolution enhancing productivity in wheat and rice production.

Aspect	Contribution/Statistic
GDP Contribution	Approximately 16-18%
Workforce Employment	Around 42-52%
Population Sustained	Over 1.38 billion people (18% of world population)

Impact Factor: 7.384

Food Grain Production	51 million tonnes (1950-51) to 285 million tonnes (2018-19)
Net Trade Surplus	3.7% of agri-GDP in 2018-19

Contribution to Food Security

India's agricultural sector ensures food security through staple crop production. The country leads in producing milk, spices, cotton, and pulses, while ranking second in wheat, rice, fruits, and vegetables. This transformation from a food-deficient nation to a self-reliant producer demonstrates the sector's success. Food grain production increased from 51 million tonnes in 1950-51 to 285 million tonnes in 2018-19, supported by improvements in irrigation, fertilizer usage, and cropping intensity.

Challenges Facing the Agricultural Sector

The Indian agricultural sector faces several challenges threatening its sustainability. Key concerns include pressure on natural resources, water scarcity, land degradation, and climate change impacts like rising temperatures and erratic rainfall. Land fragmentation, with average holdings of 1.08 hectares, limits modern farming adoption and economies of scale. Limited credit access, poor market linkages, and inadequate storage facilities further compound farmers' challenges.

1.2 Objectives of the Paper

The Indian government's **Vision 2047** aims to transform India into a developed nation by the 100th anniversary of its independence. This vision recognizes the critical role that agriculture plays in the overall development of the country. Sustainable agriculture is at the heart of this vision, as it offers a pathway to achieving food security, improving rural livelihoods, and ensuring environmental sustainability.

This paper explores the imperative of sustainable development in India and examines the role of various sustainable practices in addressing the sector's key challenges. By adopting climate-smart agriculture, promoting organic farming, and integrating agroforestry into farming systems, India can improve agricultural resilience, enhance food security, and promote environmental sustainability.

2. Current State of Agriculture in India

2.1 Major Challenges

Climate Change Climate change impacts Indian agriculture, threatening productivity and farmer livelihoods. Erratic rainfall, rising temperatures, and extreme weather events affect crop yields and farmer income. Agricultural sector vulnerability leads to crop failure and economic instability. Rising temperatures reduce yields through heat stress, while erratic rainfall disrupts agricultural operations and affects pest populations.

Water Scarcity Water scarcity challenges Indian agriculture through groundwater depletion and inefficient irrigation. India faces water crisis threatening agricultural productivity, with shortages projected by 2050. Groundwater supports 50% of irrigated area and 70% of crop production, but overuse has led to water-table declines.

Soil Degradation Soil degradation threatens agriculture through erosion and chemical fertilizer misuse. Excessive chemicals have reduced soil fertility. Land degradation reduces productivity and damages biodiversity, requiring sustainable practices to minimize environmental effects.

Challenge	Description	Proposed Solutions
Climate Change	Erratic rainfall, rising temperatures, extreme weather events	Climate-smart agriculture, development of resilient crops, Agrometeorological Advisory Services
Water Scarcity	Groundwater depletion, inefficient irrigation	IoT-based irrigation systems, micro-irrigation, efficient water management

Impact Factor: 7.384

Soil Degradation	Erosion, nutrient depletion, unsustainable use of chemical fertilizers	Conservation tillage, nutrient management, organic manures, crop rotation
Socio- Economic	Income disparities, rural migration, vulnerability of smallholder farmers	Farmer Producer Organizations, improved market linkages, financial support

2.2 Socio-Economic Challenges

Farmer Livelihoods Farmer livelihoods in India face socio-economic challenges and climate change impacts that reduce crop productivity. Smallholder farmers need technological and policy support. Farmer Producer Organizations can improve economic status but face financial and market access constraints.

Agricultural Market Inefficiencies Market inefficiencies and price fluctuations impact Indian farmers. Bureaucratic systems and poor infrastructure hinder growth. Government restricts trade to regulated markets. Platforms like EasyMandi and e-NAM aim to remove middlemen, despite implementation challenges.

2.3 Existing Policies and Frameworks

Government Initiatives The Indian government has implemented initiatives for sustainable agriculture. Key programs include National Mission for Sustainable Agriculture (NMSA), PM-KISAN, Pradhan Mantri Fasal Bima Yojana (PMFBY), and Soil Health Card Scheme. NMSA promotes climate-smart practices, PM-KISAN supports small farmers, while PMFBY provides crop insurance.

Policy Gaps Policy gaps impede sustainable agriculture in India. Implementation fragmentation, poor policy coherence, and technology adoption barriers are major concerns. Poor coordination creates overlapping mandates, while technology barriers include high costs and limited expertise.

3. Vision 2047: Sustainable Agricultural Transformation

3.1 Defining Vision 2047

Vision 2047 represents India's ambitious roadmap for achieving sustainable economic, social, and environmental goals by the 100th year of its independence. This vision aims to build a nation that is economically robust, socially inclusive, and environmentally sustainable, integrating social welfare, environmental stewardship, and economic prosperity. The core includes advancing technological innovation, fostering entrepreneurship, and promoting skill development to support a knowledge-based economy, with strong emphasis on renewable energy, eco-friendly practices, and climate resilience.

3.2 Importance of Sustainable Agriculture

Sustainable agriculture plays a pivotal role in ensuring food security, alleviating poverty, and enhancing climate resilience. It supports food security by increasing agricultural productivity while minimizing environmental harm, thereby reducing hunger and malnutrition. Sustainable agriculture also contributes to poverty alleviation by improving farmer livelihoods and enhancing resilience against climate change impacts.

3.3 Sustainable Agriculture and Development Goals

Sustainable agriculture significantly contributes to several United Nations Sustainable Development Goals (SDGs):

- SDG 2 (Zero Hunger): Sustainable agriculture supports food security, reduces hunger, and ensures everyone has access to safe, nutritious, and sufficient food through environmentally friendly methods like organic farming and agroforestry.
- SDG 6 (Clean Water and Sanitation): Sustainable agriculture conserves water resources and reduces pollution, crucial for maintaining clean water supplies.
- SDG 12 (Responsible Consumption and Production): Promotes efficient resource use and reduces waste, aligning with reducing our ecological footprint.

Impact Factor: 7.384

- SDG 13 (Climate Action): Contributes to climate action by adopting climate-resilient practices that reduce greenhouse gas emissions and enhance carbon sequestration.
- SDG 15 (Life on Land): Helps protect, restore, and sustainably manage terrestrial ecosystems by promoting biodiversity-friendly practices and reducing land degradation.

4. Sustainable Agricultural Practices for India

4.1 Soil and Crop Management

Organic Farming Organic farming in India emphasizes the use of natural inputs and processes to maintain soil health and productivity. It involves practices such as crop rotation, use of organic fertilizers, and minimal use of synthetic chemicals. Organic farming improves soil physical, chemical, and biological properties, enhancing soil fertility and crop yields.

Zero-Budget Natural Farming (ZBNF) ZBNF is a sustainable farming practice that eliminates the need for chemical fertilizers and pesticides, relying instead on natural inputs like Jiyamreet and Bijamreet. This approach reduces input costs and enhances soil fertility, promoting biodiversity and eco-friendly farming techniques.

Conservation Agriculture This practice involves minimal soil disturbance, maintaining soil cover, and crop rotation to enhance soil health and productivity. Conservation tillage and diversified cropping systems improve soil organic carbon content and reduce greenhouse gas emissions, contributing to sustainable agriculture.

4.2 Renewable Energy Integration

Solar-Powered Irrigation Solar-powered irrigation systems are increasingly being adopted in India to enhance access to electricity for irrigation purposes. These systems reduce dependency on fossil fuels and grid electricity, thereby mitigating CO2 emissions. Solar photovoltaic water pumps are particularly viable in remote agricultural areas, offering an environmentally friendly alternative to diesel generators.

Biogas Systems Biogas production through anaerobic digestion of organic waste generates renewable energy and improves nutrient recycling within farming systems. The integration of biogas systems helps in managing agricultural residues and organic waste, contributing to sustainable waste management practices.

4.3 Climate-Smart Agriculture (CSA)

Climate-smart agriculture is a strategic approach designed to address the challenges posed by climate change while enhancing agricultural productivity and resilience. Key CSA practices in India include:

- 1. Conservation Tillage: Minimal soil disturbance that helps maintain soil structure, reduce erosion, and enhance water retention.
- 2. Climate-Resilient Crop Varieties: Adoption of stress-tolerant crop varieties essential for coping with climate variability.
- 3. **Agroforestry:** Integrating trees with crops and livestock systems enhances biodiversity, improves soil fertility, and provides additional income sources.
- 4. Diversification of Crops: Crop diversification helps in spreading risk and improving resilience to climate shocks while enhancing soil health.

4.4 Socio-Economic Innovations

Role of Farmer Producer Organizations (FPOs) FPOs play a crucial role in supporting sustainable agricultural practices in India. They act as intermediaries in the transition towards sustainable agriculture by facilitating the supply of inputs and providing a platform for collective action among farmers. FPOs help small and marginal farmers overcome market risks by reducing transaction costs and improving market access.

Cooperatives and Market Linkages Cooperatives provide a commercialization model that improves income for smallholders and enhances marketing strategies and agricultural productivity. Market linkages facilitated by FPOs and

Monthly, Peer-Reviewed, Refereed, Indexed Journal

ISSN(o): 2581-6241

Impact Factor: 7.384

cooperatives enable farmers to access new markets, including e-commerce and exports, vital for the growth and sustainability of India's agricultural sector.

5. Policy and Institutional Frameworks

5.1 Review of Current Policies

National Mission for Sustainable Agriculture (NMSA) and PM-KISAN The National Mission for Sustainable Agriculture aims to promote sustainable agriculture through climate-resilient practices and resource efficiency. The Pradhan Mantri Kisan Samman Nidhi (PM-KISAN) scheme complements these efforts by providing direct income support to farmers, helping ease liquidity constraints and facilitating timely access to agricultural inputs.

Pradhan Mantri Krishi Sinchayee Yojana (PMKSY) PMKSY is designed to improve irrigation infrastructure and water efficiency across India. It integrates various ongoing schemes to ensure comprehensive water management and aims to provide water to every farm while promoting efficient water use.

Soil Health Card Scheme This initiative monitors and improves soil health by providing farmers with information on the nutrient status of their soil and recommendations for appropriate dosage of fertilizers, contributing to improved soil fertility and agricultural productivity.

5.2 Institutional Capacity Building

Strengthening Agricultural Extension Services India's agricultural extension system has undergone significant reforms to create a more inclusive and holistic approach. The system emphasizes a pluralistic model that integrates various stakeholders to facilitate knowledge-based transactions effectively and cost-efficiently.

Enhancing Public-Private Partnerships Public-private partnerships and collaborations with research institutions are crucial for advancing agricultural education and innovation in India. The National Agricultural Higher Education Project exemplifies successful multi-stakeholder approaches that significantly increase farm income and nutritional security.

5.3 Financial Support and Market Mechanisms

Subsidies and Financial Incentives India has implemented various financial incentives to promote sustainable practices, including tax breaks, indirect tax exemptions, and refunds aimed at encouraging the adoption of green technologies. Agro-power subsidies support small and marginal farmers, while subsidies on farm machinery and extension support are vital for adopting climate-smart agriculture practices.

Green Credit Mechanisms Green credit policies play a significant role in facilitating the transition to a low-carbon economy by providing financial backing to address challenges associated with green energy transitions.

Insurance Schemes for Climate Resilience Insurance schemes are essential for mitigating risks associated with climate change and promoting resilience, helping stakeholders manage financial risks associated with adopting sustainable practices.

6. Case Studies of Successful Implementation

6.1 National Success Stories

Sikkim's Organic Farming Transformation Sikkim became a pioneering example of organic agriculture, declaring itself fully organic in 2016. This transition aimed to eliminate adverse health and environmental impacts associated with conventional farming by substituting synthetic fertilizers with organic inputs. Despite challenges such as yield losses due to disease and pest infestations, Sikkim's organic farming model has preserved rich natural resources and made it a major exporter of fruits, flowers, spices, and vegetables.

Andhra Pradesh's Zero-Budget Natural Farming (ZBNF) ZBNF in Andhra Pradesh is a significant agricultural reform aimed at reducing farmers' direct costs while boosting yields and farm health through non-synthetic inputs sourced locally. The state implemented a large-scale program to train and support all 6 million farmers in adopting

Impact Factor: 7.384

ZBNF practices, showing statistically significant differences in yields and farmer incomes between ZBNF and non-ZBNF practices.

6.2 International Best Practices

Costa Rica's Coffee Sector Implementation of Voluntary Sustainability Standards in Costa Rica's coffee sector has been assessed for its contribution to the SDGs. While these standards are governance tools for sustainable agriculture, modifications in implementation are necessary to promote sustainable practices while ensuring socioeconomic benefits.

Global Framework Lessons The UN SDGs provide a comprehensive framework for sustainable development, emphasizing the integration of economic, social, and environmental dimensions. The Paris Agreement complements the SDGs by focusing on climate change mitigation and adaptation, critical for sustainable agriculture and environmental protection.

7. Pathways to Achieving Vision 2047

7.1 Technological Innovations

Precision Agriculture and IoT Precision agriculture, leveraging technologies such as IoT, remote sensing, and AI, is pivotal in enhancing productivity and sustainability in Indian agriculture. These technologies enable informed management decisions, optimizing agricultural inputs to increase production while minimizing environmental impact.

Remote Sensing and Drones Remote sensing technologies, including satellite imagery and UAVs, play a crucial role in precision agriculture by providing high-resolution data for crop monitoring, irrigation management, and yield prediction. Drones equipped with multispectral sensors enhance early disease detection and precision spraying.

AI Applications AI applications in agriculture, such as machine learning algorithms, are transforming traditional farming practices by automating tasks like harvesting and sorting, reducing labor costs and environmental impacts while supporting decision-making processes.

7.2 Policy Recommendations

Aligning Agricultural Policies with Sustainability Goals To align agricultural policies with sustainability goals, it is essential to integrate the Sustainable Development Goals into the existing agricultural framework. The creation of a National Policy on Eco-Agri-Food Systems has been proposed to manage the entire agricultural value chain sustainably.

Enhancing Implementation Strategies Effective implementation of sustainable agricultural practices requires a comprehensive policy framework that promotes synergy among various institutions, involving local governance structures like Panchayati Raj institutions.

Ensuring Financial Support Financial support is crucial for the adoption of sustainable agricultural practices. Providing subsidies in the form of soft loans for purchasing high-quality fertilizers and adopting energy-saving technologies can improve environmental efficiency.

7.3 Research and Development Priorities

Investing in Agricultural R&D Investing in agricultural R&D is crucial for developing innovations in sustainable technologies, pest management, and climate adaptation. The National Initiatives on Climate Research Agriculture and the National Mission for Sustainable Agriculture are significant government projects aimed at enhancing resilience in agriculture.

Climate-Smart Agriculture and Pest Management Climate-smart agriculture, including climate-smart pest management, is vital for sustainable agricultural development, focusing on early diagnosis and management of climate-related challenges affecting plant health.

7.4 Community-Based Approaches

Empowering Farmers through Education Empowering farmers through education is crucial for sustainable transitions in agriculture. Programs like Community-managed Natural Farming in Andhra Pradesh highlight the importance of involving youth and agricultural graduates in sustainable practices.

Impact Factor: 7.384

Local Governance and Participatory Decision-Making Local governance and participatory decision-making are essential for sustainable agricultural transitions. Institutional innovations such as urban community-supported farming models and Farmer Producer Organizations have been effective in enabling sustainable transitions.

8. Challenges and Barriers

8.1 Economic Barriers

High initial costs of sustainable practices and financial constraints for smallholders are significant economic barriers. The transition to sustainable agriculture often requires substantial investment in new technologies and practices, which can be prohibitive for small-scale farmers.

8.2 Social and Cultural Barriers

Resistance to change and lack of awareness are prevalent social and cultural barriers. Many farmers are accustomed to traditional farming methods and may be hesitant to adopt new practices due to lack of understanding or fear of the unknown.

8.3 Technological Barriers

Limited access to modern technology and infrastructure constraints are major technological barriers. The digital divide in rural areas limits the adoption of advanced agricultural technologies such as precision farming and digital agriculture.

8.4 Policy and Institutional Barriers

Weak coordination between different government agencies and policy fragmentation are significant policy and institutional barriers. The lack of cohesive policies and poor inter-agency collaboration can lead to inefficiencies and hinder implementation of sustainable agricultural practices.

9. Strategies and Recommendations for Overcoming Barriers

9.1 Capacity Building and Education

- Expanding Farmer Education Programs: Enhance educational programs for farmers to improve their skills and knowledge through academia-industry linkages
- Creating Digital Platforms: Integrate digital agricultural technologies into educational platforms to facilitate knowledge sharing
- Enhancing Extension Services: Increase availability of extension services and training to improve adoption of innovative practices

9.2 Financial Mechanisms and Support

- **Providing Financial Incentives:** Implement subsidies and low-interest loans to encourage adoption of sustainable practices
- Supporting Market Access: Develop certification systems and direct market access for organic and sustainably produced products

9.3 Strengthening Research and Innovation

- **Fostering Collaboration:** Promote collaboration between governmental, private, and academic institutions for research and development
- Enhancing R&D Activities: Increase research and development activities to accelerate progress in the agricultural sector

9.4 Strengthening Market Linkages

• Supporting Sustainable Products: Develop certification systems and direct market access for organic and sustainably produced products

Impact Factor: 7.384

Consumer Education: Educate consumers about benefits of sustainable products to strengthen market linkages

10. Conclusion

10.1 Key Findings and Insights

Sustainable agriculture is crucial for India to achieve its Vision 2047, contributing to economic growth, food security, and environmental resilience. Key strategies include adopting climate-smart practices, improving water management through micro-irrigation and rainwater harvesting, and restoring soil health via organic farming. Renewable energy integration, socio-economic innovations like Farmer Producer Organizations, and policy reforms are critical. Technological advancements and community-driven models demonstrate scalable solutions, but success hinges on multi-stakeholder collaboration and inclusive policies.

10.2 Call to Action

India must urgently scale sustainable practices nationwide, leveraging proven models and fostering collaboration among governments, farmers, and the private sector. Priorities include accelerating technology adoption, reforming financial incentives, and integrating policies for food security and climate resilience. By 2047, the vision is an agriculture sector that ensures farmers' prosperity, nutritional security, environmental regeneration, and global leadership in sustainability. Immediate, coordinated action is essential to transform this vision into reality, balancing heritage with innovation for future generations.

REFERENCES

- 1. Acharya, S. S. (2010). Indian Agriculture and Food Security: Current Concerns and Lessons.
- 2. Alok K., et al. (2021). An Analytical study of Contribution of Agriculture Sector in growth of Indian Economy. *Jai Maa Saraswati Gyandayini*, 7(I), 08-18.
- 3. Bharucha, Z., Mitjans, S. B., & Pretty, J. (2020). Towards redesign at scale through zero budget natural farming in Andhra Pradesh, India. *International Journal of Agricultural Sustainability*, 18, 1-20.
- 4. Bhatt, A., & John, J. (2023). Including farmers' welfare in a government-led sector transition: The case of Sikkim's shift to organic agriculture. *Journal of Cleaner Production*.
- 5. Chel, A., & Kaushik, G. (2011). Renewable energy for sustainable agriculture. *Agronomy for Sustainable Development*, 31, 91-118.
- 6. Dan, I. (2024). Viksit Bharat @2047: A vision for India's sustainable development. *The Scientific Temper*.
- 7. Gulati, A., & Juneja, R. (2022). Transforming Indian Agriculture. In *Indian Agriculture Towards 2030* (pp. 9-37). Springer Nature Singapore.
- 8. Jat, H., et al. (2019). Climate Smart Agriculture practices improve soil organic carbon pools, biological properties and crop productivity in cereal-based systems of North-West India. *CATENA*.
- 9. Kumar, Ch. M. S., et al. (2023). Solar energy: A promising renewable source for meeting energy demand in Indian agriculture applications. *Sustainable Energy Technologies and Assessments*.
- 10. Lori, M., et al. (2024). Organic farming systems improve soil quality and shape microbial communities across a cotton-based crop rotation in an Indian Vertisol. *FEMS Microbiology Ecology*, 100.
- 11. Priyadarshini, P., & Abhilash, P. (2020). Policy recommendations for enabling transition towards sustainable agriculture in India. *Land Use Policy*, 96, 104718.
- 12. Sharma, K., & Shivandu, S. K. (2024). Integrating Artificial Intelligence and Internet of Things (IoT) for Enhanced Crop Monitoring and Management in Precision Agriculture. *Sensors International*.
- 13. Singh, A., & Burman, R. (2019). Agricultural extension reforms and institutional innovations for inclusive outreach in India. *Agricultural Extension Reforms in South Asia*.
- 14. Tripathi, G., et al. (2023). Government Agriculture Schemes in India: A Review. *Asian Journal of Agricultural Extension, Economics & Sociology*, 41(11), 58-67.
- 15. Venkatesan, P., et al. (2023). Aligning Agricultural Research and Extension for Sustainable Development Goals in India: A Case of Farmer FIRST Programme. *Sustainability*.